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Power laws of the resistance of solutions to flow in pipes and in a boundary layer 
are discussed as approximations of logarithmic functions. Although the resulting 
description is less accurate, this is compensated by its simplicity. 

The logarithmic distribution of the average velocity and the corresponding "logarithmic" 
laws of resistance play a fundamental role in the description of flow in pipes and in a 
boundary layer, both for a viscous liquid [i] and for polymer solutions [2]. Power functions, 
which are simpler, are also frequently used in both cases. Unlike the case of a viscous 
liquid, the coefficients of the power laws of resistance for polymer solutions turn out'to 
depend hoth on the properties of the solution (viscosity, polymer concentration, etc.) and on 
the dimensions of the region of flow. 

Turbulent Flow in Pipes. As has been found empirically [3], and as also follows from 
general considerations of dimensionality and similarity analysis [2], the distribution of 
the average velocity of flow of polymer solutions far from the walls and the axis of a large 
pipe is well described 5y a logarithmic formula having form (when the degradation of the 
solution is negligibly small) 

( u + > "=~2.5 In [ +  5.5, <=z+i(u,/U,cr) ~, (1) 

w h e r e  ~ > 0 f o r  u ,  > U*cr  and 3 = O o t h e r w i s e .  T h i s  f o r m u l a  c o n t a i n s  two p a r a m e t e r s  wh ich  
r e f l e c t  t h e  e f f e c t  p r o d u c e d  by  t h e  c h a r a c t e r i s t i c s  o f  t h e  p o l y m e r  s o l u t i o n  on t h e  a v e r a g e -  
v e l o c i t y  p r o f i l e .  The v a l u e  U , c r  c h a r a c t e r i z e s  t h e  b e g i n n i n g  o f  t h i s  e f f e c t ,  and ~ z 0 .174  

c h a r a c t e r i z e s  i t ~  i n t e n s i t y .  (~he d i m e n s i o n l e s s  p a r a m e t e r  a i s  g e n e r a l l y  u sed  i n  [2 ,  3 ] ) .  

I n  a bounded  r e g i o n  o f  v a r i a t i o n  o f  t h e  v a r i a b l e  ~ i t  i s  p o s s i b l e  to  u s e ,  i n s t e a d  o f  
t h e  l o g a r i t h m i c  e x p r e s s i o n  ( 1 ) ,  a power  e x p r e s s i o n  wh ich  i s  c l o s e  to  i t :  

< u § > --~ v .  (z+u~/u!oW/< (2 )  

I f ,  as  i s  done  i n  t h e  d e s c r i p t i o n  o f  t h e  f l o w  o f  a v i s c o u s  l i q u i d  [1 ,  4 ] ,  we u s e  t h e  
d i s t r i b u t i o n  (2) i n . t h e  e n t i r e  p i p e ,  t h e n ,  i n t e g r a t i n g  o v e r  a c r o s s  s e c t i o n ,  we a r r i v e  a t  a 
power law for the resistance: 

~, ~ K . ( rtt*c------Jr , 

2 q- 213 21~ 
m l =  , m ~ -  (3)  

n + l  +[~ n + l + ~  
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Fig. I. Variation of the dimension- 
less parameter a as a function of c, 
the concentration of guar resin: 4) 
from the data of [5]; 5) from [6]; 
curves 1-3 were constructed by using 
power approximations of experi- 
mental data taken from [5] with n = 
8, i0, and 12, respectively. 

The explicit form of K = K(n, 8) and the other 
similar coefficients encountered later will be given 
at the end of this article. 

In the power law of resistance (3) the de- 
pendence on the diameter of the pipe, the viscosity 
of the solution, and the critical stress U2,cr for 
fixed Reynolds number enter only through the dimen- 
sionless complex rU,cr/9. At the same time, the co- 
efficients mz, m2, K may depend % on other charac- 
teristics of the solution through 8. Such a divi- 
sion of the effect in the case of a power approxi- 
mation will in fact take place only in a bounded 
region of variation of the dimensionless parameters 
(not only the Reynolds number), as can be concluded 
from the conditions of the derivation of (3) and is 
illustrated below. 

Equation (3) can be obtained directly by a 
power approximation of the "logarithmic" law of 
resistance, which follows [2, 3] from the distri- 
bution of the velocity (i) 

K 8 ~  = 2,5 In [0,256 (Re V[1/32 )'+~ (U.crr/v) -~] -~- 5,5. (4) 

O b v i o u s l y ,  t h e  s u i t a b l e  exponen t  n w i l l  depend on 
t h e  v a l u e  of  t h e  argument  o f  t h e  l o g a r i t h m .  

The expression [4) for a polymer solution is formally equivalent to the expression for 
the resistance of a viscous liquid with an effective Reynolds number Re(u,/U*cr) 8, which is 
greater than the actual value of Re for the flow in the pipe. However, to a larger Reynolds 
number there corresponds a larger value of n. To the expression (4) we Can also assign the 
form of the law of resistance of a viscous liquid by means of a simple stretching of axes: 

%--+ a~,, Re--+ b Re, 
t3 

a - (1 + ~)~, b "z = (1 .~- I 5) [2,3U, crr/v] l+f~, 

where the stretching coefficients do not depend on the position of the point in the ~, Re 
plane. Consequently, in the new coordinates the curves for the resistance of a viscous li- 
quid and of polymer solutions will coincide, except for the region Re z Recr and for very 
large Reynolds numbers, for which it is essential to consider the transitional characteristics 
and degradation of the polymer which are not described by the relation (4). 

To a power function of the type (3), near the point at which the resistance begins to 
decrease, wecan assign the form 

%/%cr ~i(Recr/Re) m~, ~'cr ~ Ko Recr 

n+l  

Recr ~ (i.::32/Ko rU,cr/V) n 

2 
n-}-I 

(5) 

Here the role of the parameters 8, u, cr is transferred to m,, Reqr [by using (5), we 
can easily give an inverse definition of 8, U*cr in terms of mz,' Recr]. 

i~in the subcritical regime of solution flow (when u* < u ^_) as for a viscous liquid, we 
will have m2 = 0, m, = 2/(n + i), K = KoEK(n, 0), and, in particular, when n = 7, we obtain 
the Blasius resistance law % z 0.32 Re-I/4. - 
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In the special case Re ~ Recr ~i04, as is known, in the subcritical regime of flow a 
satisfactory description is obtained with n = 7. Then the equations become simpler: 

213+2 8 
k ~ 0,32 Relc~ ( l~elRe))~-, Re#~(lOru,cr./v ) 7. (6)  

For large Reynolds numbers we must select large values of n. However, it has already 
been noted that the choice of appropriate values of n is closely related to the value of the 
parameter B as well. This is clearly illustrated by the example given below. 

In Fig. 1 we show the variation of the parameter a = 5.75 B as a function of the con- 
centration of a guar resin in water. The solid dots were plotted by using the experimental 
data of [5], which studied the flow of solutions over a wide range of concentrations of the 
guar resin JA-20-D. The open circles correspond to the data of [6]. The points in the figure 
represent values of a corresponding to a logarithmic approximation of the type (4) to the 
experimental curves of resistance for Re ~ 104-105 . It should be noted that the value of 

may also be determined from the Bma x tabulated in [5], using a = 1.63 Bma x. 

The solid curves in Fig. 1 were obtained as follows. We drew straight lines through the 
experimental points on the graph of % vs. Re taken from [5] for Re - i0~-I05. Then we de- 
termined the exponents of the approximations to the true curves of resistance for various 
concentrations of the polymer. Using these exponents m1(c), we carried out the conversion 
(see (3)) of a(c) for the values n = 8, i0, and 12. Comparing the functions a(c) obtained 
in this manner and the previously plotted points in Fig. i~ we see that large values of n 
correspond better to large concentrations (large values of ~). 

It should be noted that the experimental points in Fig. 1 do not lie either on a curve 
of the type a ~ c, discussed in [7], or on the curve a ~ c  , discussed in [8-10]. 

Finally, according to [2, 9, ii, 12], we should expect the value of a to be bounded 
above. According to [2], the upper bound for a should be the value a~ax = 42 if the dominant 
role in the phenomenon of resistance reduction is played by the time-dimension character- 
istic of the solution, or the value alma X = 21 in the case of the length-dimension character- 
istic. It can be seen from Fig. i, in the first place, that for a guar resin concentration 
of c = 1.5 �9 10 -3 we reach the limiting value of a~ax, and, in the second place, that for 
c > 3 �9 10 -4 we have the inequality ~x<a~maxe �9 Thus, at least for a guar resin concen- 
tration by weight.of more than 3- 10 -4, the fundamental role in reducing the resistance must 
be played by the elastic properties of the liquid. 

The same is true for other polymer solutions as well. The difference lies, as a rule, 
only in the different rate at which the limiting value of a~a x is reached (for polyoxyethy- 
lene solutions the limiting value is reached at concentrations which are lower by a factor 
of several tens than the concentrations of guar resin). In some solutions the limiting value 
is apparently lower than a~ax (see, for example, [5]). 

Since the quantity 6 is bounded above and since n > 7 (with large values of n cor- 
responding to larger values of ~), as follows from (3), the curves of lowered resistance 

= %(Re, B, ...) cannot have at any point a slope steeper than ~Re -I. Moreover, as the 
Reynolds number increases, the slope of such curves becomes less and less steep. Such an in- 
terpretation of the limiting regime of resistance reduction was mentioned in [13]. 

Limiting Asymptote of Resistance Reduction. Many experimental data seem to support the 
assumptio n that there is saturation of the effect of polymers on turbulent flows. According 
to [2], under conditions of such saturation the velocity profile far from the walls and the 
axis of the pipe has the form 

( u* ) = 2,51n~ l i- 5.5, 11 := 1.35.10-~(z+) 4'6s. 

M a k i n g  u s e ,  a s  b e f o r e ,  o f  a p o w e r  a p p r o x i m a t i o n  t o  t h i s  e x p r e s s i o n  

( u+ ) ~-~ 10 -4/" ?,~'(z+'4'65"",, , 

(7) 

(8) 

we arrive at a power law for the resistance 

2 7 7  
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% ~ K o 10 n-{-I ..... oo Re , m~ = 2 ( I  + n /4 ,65) -<  (9) 

Since the limiting profile (7) is independent of the specific properties of the polymer 
solution, the law of minimum resistance is found to be a universal law, i.e., its form does 
not depend on the characteristics of the polymer or the diameter of the pipe. 

It can be seen from Fig. 1 that a value of n = 12 corresponds well to the curve showing 
the effectiveness of the polymer as a function of concentration for large values ~. If we 
now substitute this value into Eq. (9), we obtain 

~ ' C  Re -~ C ~ 1. ( 1 0 )  

It is interesting to compare this relation with the expressions found empirically. The 
following power approximations have been proposed for the curve of minimal resistance: 
%~Re-I/2 in [14], 1=1.68 Re -0'55 in [15], 1=2.18 Re -0.57 for Re < 4 �9 104 and 1=0.27 Re -0.37 
for Re > 4 �9 104 in [16], I=5.6 Re -2/3 in [17], and, lastly, I=0.5 Re-0, ~3 in [18]. 

The minimal resistance is characterized by the fact that, like the resistance of a 
viscous liquid, it is determined by the single parameter Re. Therefore we can speak more de- 
finitely of the value of the exponent n corresponding to some particular region of Reynolds 
numbers. According to [2], the equation of the minimum-resistance curve has the form 

/8/~ ~ l l , 6 1 n ( R e !  M 3 2 ) - - 3 2 .  (ii) 

The function appearing on the right side, together with its derivative, is well approx- 
imated for Re~104 by the power function 

For Re-10 5 we have 

2 4 Re -~ ~ , �9 ( 1 2 )  

~ 0.3 Re -~ (13) 

Turbulent Boundary Layer with No Pressure Gradient. In the problem of longitudinal flow 
past a flat plate, we shall assume, as is usually done in a description of the flow of a 
viscous liquid [i, 4], that the turbulent boundary layer begins at the forward edge of the 
plate, and that we can neglect the details of the velocity distribution in the viscous sub- 
stratum and the transition zone near the plate; we use the approximate integral relation 

5 

(u,/Vy -_.aa;ax, ~ = v-~j" < u > ( v -  < u > )dz. (14) 
o 

Here, unlike flow in a pipe, the magnitudes of the velocity and length vary along the 
plate as the boundary layer develops. As usual [i, 4], we shall assume that the distributions 
at each cross section are determined by the local values of u,(x), ~x), and we shall use 
the same formulas as in the case of a pipe, replacing r with ~. 

For the power approximation of the distribution of the average velocity Of the flow of 
a polymer solution in the entire boundary layer, we obtain from Eq. (2) the relations 

tb 
<u >/V = (z16) TM, 6216 ---- (n + l ) ( n +  2)' (15) 

which do not differ from such relations for the case of a viscous liquid. 
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From (2) we also obtain the relation between ~(x) and u,(x): 

Using relations (15), 

6 =  ~ (V/%)"u~ -c'+~+~l. VU, cr 

(16), we can transform Eq. (14) into an equation for u,(x): 

( 1 6 )  

du, (x) =- - -  Kt (vU.Bcr V"+2)-~[u, (x)] ~44+~. (17) 
dx 

According to this equation, the stress on the plate, uS, decreases monotonically as we move 
away from the forward edge of the plate. If the plate is sufficiently long, at some distance 
from the forward edge the stress may become lower than the critical stress for the beginning 
of the polymer effect, uS , i.e. starting from some x = Lcr, the polymer begins to have an 

cr 
effect on the development of tlhe boundary layer. Let us consider separately two possible 
cases, with L > Lcr and L < Lcr. 

"Small" Plate (Large Velocities). When the length of the plate is less than the critical 
length (L < Lcr), the polymer changes �9 the character of the boundary layer at all distances 
from the edge (8 > 0 everywhere). Integrating the equation with u, § = as x § 0, we obtain 
the equation 

" ' " (n + . .  (x) = ..o~ (Lc~,X) , p ,  = 3~+ ~)-x, ( 1 8 )  

in which 

Lcr 

We also have, according to (16), 

Ko v ( v )  ~+' 
U, cr \ :t, cr / (19) 

6 ( 4 _ _  ~ ( v 
U,cr [ ~nU*cr . Lcr ) P ~ -  - -  ' n + 3 + ~ (20) 

From Eqs. (18), (20) it can be seen that in polymer solutions the stress on the walls 
decreases somewhat more slowly and the boundary layer grows more rapidly than in the case 
of a viscous liquid. 

Introducing the local coefficient of resistance cf = 2(u,/V) 2 and the Reynolds number 
Re x = Vx/~, we can rewrite Eq. (18) in the form 

K (it 'V ~2~pl --2P* C/~ a~ , c r /  : ~e.,: . 

The equations for the complete coefficient of resistance 
by another integration. 

L 

CI=~ L: ~ ,I csdx 
0 

(21) 

can be obtained 

/' U !2f3P' 
C, == /~a / ~ -  ) " ReT2;' ; (22) 

/ U L \26p' 
Cj K,( ,c~ ) ReEa,+~p, 

: ~ , ~ !  ' (23) 

The same relation is written in two different ways because it is possible to specify 
different conditions. The first' equation is suitable for conditions in which we have a speci- 
fied velocity of oncoming flow V, while the second is suitable for a fixed plate length L 
and a variable velocity V. The appearanc@ of two different written forms of the resistance 
law for a polymer solution which are reducible to one form for a viscous liquid (8 = 0) is 
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Fig. 2. Curves of local resis- 
tance of the plate (i, 2, 3) 
for different velocities of 
the oncoming flow V~ < V= < V3 
(turbulent regime of flow past 
the plate): i) V~; 2) V2; 3) ~ 
V~. 

due to the dimensional characteristic of the solution 
U,c r. Because of this, we have the additional dimension- 

less characteristics U,cr/V, U, crL/9. 

The condition for a small plate, L < Lcr, can be 
rewritten, with the aid of (19), as 

I n+2 
~^~+3 (24) L < K~ ~+3 v/U,cr ~ L  , 

--I I 

�9 V > K~ n+3 u,  cr Re~ +8. (25  ) 

The last inequality is satisfied in practice for 
V > 50 U,cr. Usually u,_ r < i0 -I m/see, and consequently, 
when V > 5 m/sec, the p~ate may be considered short in 
the above-described sense of the word. 

Large Plate (Low Velocities). According to (19), 
when the flow velocity is reduced, the value of Lcr de- 
creases extremely fast and may become so small that we 
will have the inequality Lcr < L. In this case of a 
"long" plate, integration of Eq. (17) when x < Lcr leads 
to Eq. (18), whereas when x > Lcr, we obtain 

x - -  Xcr = K~,o -V- k u--~ / ' xcr : (n + 3)(n q- 1 q- I 3) 

This relation is completely analogous to the equation for u~(x) in a viscous liquid, 
except that in the present case the origin from which x is measured is displaced # to the 
point Xcr. For the values we are considering, n > 7, 8 < 7.3, the inequality Xcr < 0.i Lcr 
holds, i.e., the value of Xcr is always small in comparison with x (x > Lcr). 

Neglecting the value of Xcr, we can rewrite (26) as a relation which coincides in form 
with the law of resistance of a viscous liquid: 

2 

c]'~ K3oRex .+3, Rex :> Re.cr (27)  

Thus, at large distances from the forward edge of the plate (x > Lcr) the development 
of the boundary layer on a long plate takes place practically in the same way as in a vis- 

cous liquid. 

An approximate estimate for the critical value of the Reynolds number, Recr, at which 
the flow past the plate goes from one regime to the other has been found by setting the 
expressions (21) and (27) equal to each other: 

Reef ..~ K~ (V/u, cr) n+3' ( 2 8 )  

which differs by a numerical factor of the order of unity from the exact value 

Rec~ -- Ks (V /u, cr) ~+~. (29) 

tXt the point x = Xcr, itself the boundary layer has no singularity, since Eq. (26) described 
the development of the Boundary layer only for x > Lcr > Xcr. 
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Fig. 3. Curves of overall resistance 
for various specified values of the 
velocity of the oncoming flow (]., 3, 
5, ...) and various lengths of the 
plate (2, 4, 6, ...): VI < V3 < V5 
�9 .., L3 < L4 < L~ < .... The ordinate 
axis shows for Cf. 

This discrepancy is the result of neglecting 

Xcr. 

The character of the transition from the 
"viscous" regime of flow past the plate to the 
regime of flow with reduced resistance is differ- 
ent from the character of the transition usually 
encountered in the case of the flow of solutions 
in pipes. The resistance decreases for small Rey- 
nolds numbers Re x [see (21)], whereas for "viscous" 
flow the resistance decreases for large values of 
the Reynolds number [see (27)]. This is illus- 
trated graphically in Fig. 2. 

By integrating (21) and (27) along the length 
of the plate, we can easily convince ourselves 
that even for an overall coefficient of resistance, 
with Re L > Recr, we have the law of resistance of 
a viscous liquid 

2 

Cf ~ K,o ReL n+3, ReL :> Recr. (30)  

The curves of overall resistance are shown in Fig. 3. They consist of rectilinear seg- 
ments Qin the power approximation considered here with constant n) of viscous and reduced 
resistance, where the order of succession of these segments is different, depending on 
whether flow velocities or plate lengths are specified. On the curves with fixed length L 
the "viscous" segment precedes the segment with reduced resistance, whereas the contrary is 
true for a fixed velocity V. The entire region of reduced resistance can be plotted with two 
intersecting families of parallel straight lines, with V = const and L = const (actually 
these straight lines are close to the true curves only in a small region of Reynolds number 
values). The curves of resistance of a plate of specified length have been discussed earlier 
in I19], and the curves of the other type have been discussed in [20, 21]. 

In ~19, 20] the resistance formulas were derived by using an expansion which is not 
valid when the resistance has been greatly reduced. In [20] an error was made in the inte- 
gration of the equation for u, Cx). A somewhat different analysis of power approximations in 
the case of a short plate is given in [22]. 

In conclusion, we give below the expressions for the coefficients K v = Kv(n , B) en- 
countered above in terms of the quantities n, Yn, and B: 

5 bn 2n 

: Ko : + 1)(2  + i) ],,+, 
n2W~ 

Kt = (n -l- 1)(n -~- 2) y~,, /(-_;-1 = (rt@ 3 + 8) K~, 
n (n + 1 -i 8) 

n ~ 3 + i 3  K3, 
K~ = 2K2~ ', K, - E~,: 1 + 8 

K~ TM = (K30/K9 ~+3, K~o ---- K. (n, 0). 

(3i) 

For nzl0 and B=5 we have the following estimates for these coefficients: yzozll.5; 
Klo~l.5Klz5.1010; K2~K=o=I0-12; K5~I0-12; K3zK~=3K3o=3K4ozl0-1=Ko; K~I. 

A simple estimate for the exponents in the power law of resistance for a pipe (3) can 
be obtained if in the power approximation of the right side of (4) we assume that the func- 
tions and their first derivatives are close to each other: 

1 -b 8 m2 0,88 (1 + 8 ) ,  ~ m i ~ - - ~ 2  
8 1 -t- 0,88 (1 Jr I~) ] / T  " (32)  
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For a viscous liquid, as is known, this equation holds satisfactorily with a numer- 
ical coefficient of 1.0 instead �9 of 0.88. 

The limiting value ~ ~ 7.3, according to this equation there corresponds 

14.6 V-~- 
m 1 

I + 7.3 V--~-" (33) 

but the indicated upper bound mx is valid only for resistance curves which lie above the 
curve of minimal resistance (the limiting asymptote). 

For the minimal resistance curve (with a corresponding 8 value of 8=3.65) we obtain 

�9 moo 

8.2F ~ X 

I ~ 4,1 ]/~-' (34) 

i.e., an even stronger bound. 

NOTATION 

<u>, average velocity; z, distance for wall; r, radius of pipe; ~, thickness of boun- 
dary layer; ~, coefficient of resistance; Re, Reynolds number; a ffi 5.75B, dimensionless 
characteristic of polymer solution; U2,cr, critical stress at which the polymer begins to 
affect the turbulence (Hensity of solution is taken to be unity); ~, viscosity of solution; 
u*, dynamic velocity; <ut> = <u>/u,, z + = zu,/~; V, maximum velocity; L, length of plate; 
cf, Cf, local and overall coefficients of resistances; n, Yn, K~, numerical coefficients. 
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